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Abstract. We prove a new congruence for computing Bernoulli numbers modulo a prime. 
Since it is similar to Vandiver's congruences but has fewer terms, it may be used to test primes 
for regularity efficiently. We have programmed this test on a CYBER 205 computer. Fermat's 
"Last Theorem" has been proved for all exponents up to 150000. 

1. Introduction. The first step in proving Fermat's "Last Theorem" (FLT) for a 
prime exponent p by computer is to determine the Bernoulli numbers B2k with 
2 < 2k < p - 3 whose numerator is divisible by p. We use the even index notation 
for the Bernoulli numbers: B2 = 1/6, B4 = - 1/30, etc. If p divides none of these 
Bernoulli numbers, then p is regular and FLT holds for exponent p by a theorem of 
Kummer. But if p divides some B2k with 2 < 2k < p - 3, then p is irregular and 
(p, 2k) is called an irregular pair. Additional work is needed to prove FLT for an 
irregular prime exponent. We have performed this work, which is easy compared to 
the first step, and proved FLT for all primes p in the interval 125000 < p < 150000. 
Since we have built on the work of others (see [6] and its references), FLT is now 
known to be true for all exponents up to 150000. 

During the past 50 years several researchers have used congruences like (2) and (7) 
below to compute B2k modulo p and find irregular pairs. (A minor problem arises 
when the coefficient of B2k is a multiple of p. That rare case is discussed at the end 
of Section 3.) Similar congruences with fewer terms would provide swifter tests for 
regularity. Theorem 3 gives such a congruence. This theorem was used to compute 
the irregular pairs with 125000 < p < 150000. The CYBER 205 program for this 
calculation is described in Section 3. In Section 4, we prove a lower bound for the 
number of terms in congruences like (2)-(5). 

Many of the ideas in this paper were contained in the undergraduate thesis [4] of 
the first author, which was written at Harvard University under the supervision of 
Professor John T. Tate. 

2. Some Congruences for the Bernoulli Numbers. We begin with Vandiver's 
well-known corollary to Voronoi's congruence. The notation [x] means the greatest 
integer < x. 
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THEOREM 1 (VANDIVER [5]; see also [2]). If p is an odd prime, k >? 1, p - 1 does 
not divide 2k, a ), 2 and (a, p)= 1, then 

B a-I [jp/a] 

( 
a 2k 2 a2k-1 E E S2k-1 (mod p) j=1 S=O 

By Fermat's "Little Theorem," we can rewrite this as 

B -1 [jpla] 

(aP 2k - a) 2k --E E S 2k-1 

j=1 s=O 

a-1 

- (a-j) S2k (modp) 
j=1 (j- 1)p/a<s<jp/a 

The quantities jp/a, j = 1, 2,..., a - 1, cannot be integers because (a, p) = 1. 

When we combine the terms 2k- 1 and (p - S )2k-1 = -S 2k-1 (mod p), we find 

B [a/2] 

(ap-2k 
_ a) 2k_ (a + I - 2 j) E S2k-1 

(1) j=1 (j-i)p/a<s<jp/a 

[a/2] 

- E(a + 1 - 2j)S(j J)(modp), 
j=1 

where we have set S(x, y) = EXP<S< s 2kS1. (A sum over the empty set is 0.) 
We will keep p and 2k fixed in this section. Write C(a, b, c) = aP-2k + bp-2k 

Cp-2k - 1. Let { z } represent congruence (1) with a replaced by z. If c = a + b - 1, 
then the linear combination { a } + { b } - { c } has C(a, b, c) for the coefficient of 
B2k/2k. The condition c = a + b - 1 guarantees a good deal of cancellation on the 

right side of {a} + {b} - {c}. For example, the combinations {2} + {3} - {4}, 

{3} + {4} - {6}, {4} + {5} - {8}, and {2} + {5} - {6} are 

B2k 2S , (2) C(2,3,4) B2k (11) (modp), 
2 k 2S 3~ 

(3) C(3, 4, 6) B2k 2S 1 1 ) (mod p), 

(4) C(4, 5, 8) 2k 2S( 8 ) + 2S ' ) (modp) 

and 

(5) C(2,5,6) B2k 112S ) + 2S(3, 5) (modp), 

respectively. The sums in congruences (2) and (3) have about p/12 terms S2k-1 

each, while those in (4) and (5) have a total of about p710 terms each. Obviously, 
B2k may be computed modulo p more efficiently by congruences with fewer terms. 

Wagstaff [6] searched for congruences like 

(6) (coefficient) 2 - S(x1, yj) (modp), 
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where xi and yi are exact multiples of 1/n with n < 120. He found nothing better 
than (2) and (3), and speculated that (6) could never have fewer than about p/12 
terms in all its sums together. We prove in Section 4 that the right side of 
{a} + t b } - { a + b - 1} never has fewer than about p/12 terms. 

In spite of these negative results, some congruences for B2k modulo p do have 
fewer than about p712 terms. Vandiver [5] noted that the endpoints of the second 
sum in (5) are exactly twice those of the first sum. There is a one-to-one correspon- 
dence s + 2s between s in the first sum and even s in the second sum. When we 
separate the even and odd s in the second sum, (5) becomes 

C (2, 5, 6) 4k (1+ 2 2k-)S 
1 
6'5) + 

~ 
4k ( 6 5 ) p/3<s<2p/5 

(7) s odd 

(1 + 22k-1)S 1 1 ) -22k-1S( 3 ) (modp). 

The total number of s's in the sums of (7) is about p/15. Theorem 3 below gives a 
similar congruence with about p/18 terms. 

Vandiver's idea works best when the endpoints of one sum S(x, y) in the 
congruence are exact multiples of the endpoints of some other sum. This coincidence 
appears in striking form in {2} + {b} - { b + 1}. Congruences (2) and (5) are the 
cases b = 3 and b = 5 of Theorem 2. 

THEOREM 2. Assume b > 2, p is prime, p > b + 1, k > 1 and p -1 does not 
divide 2k. Then 

C(2, b, b + 1) 4k = E, Sb+1 )(md* 
4k m=1 b+1 

When b is odd, the total number of terms 52k-1 in these sums is about (b - 1)p/8b < 

p/8. When b is even, the number of terms is about (b + 2)p/8(b + 1) > p/8. 

Proof. By the corollary (1) to Vandiver's congruence we have 

C(2, b, b + 1) S2 - 0 ) + YE (b + 1 - 2j)S( 1 11) 
2k 2 ~~j=1b b 

[(b + 1)/2] 

- E (b + 2 - 2j)S( lb + 1 b + 1) (modp). 

Let 1 = LCM(2, b, b + 1) = b(b + 1). Express the sums above in terms of 

S((i- 1)/i, i/l): 

Bk 1/2 . . [b/2] j(b? 1) 

C(29 b, b + 1) - 2k _ESt i - + L (b + I - 2 j) E St 

[(b?+1)/21]j 

- E (b + 2 - 2j) E S 
j=1 i=jb-b+l 

2 ([i - 1 [i - ])(i - 1 i) (m ) 
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Now the quantity [(i - 1)/b] - [(i - 1)/(b + 1)] is 1 when mb < i < m(b + 1) for 
some 1 < m < h = [b/2], and it is 0 for all other i in 1 < i < 1/2. Therefore, 

B m- -m~b+l) ( m ) tb X m(b + 1)) 

C(2,~~ ~ L, b( +) 
2k S S md 

m=1 i=mb?1M= 

h 

m=1 

The total number of terms in the sums is about 

I 
_+1 )( + 2 + +h)p = h(h + 1) p 

b b + I ~~2b(b?+1) 

This quantity is hp/4b = (b - 1)p/8b < p/8 when b is odd. It is (h + 1)p/4(b + 1) 
= (b + 2)p/8(b + 1) > p/8 when b is even. This completes the proof. 

The following two propositions give the basic facts we need to manipulate 
congruences like the ones in Theorem 2. As usual, p is an odd prime and p - 1 
does not divide 2k. 

PROPOSITION 1. Let d be a positive integer relatively prime top. If x < y, then 

S(x, y) -d 2k1LS( d Yd )(mod p). 
i=O 

Proof. In the sum for i on the right side, s lies in the interval (x + i)p/d < s < 
(y + i)p/d. These inequalities are equivalent to xp < ds - ip < yp. Therefore, the 
right side equals 

d-1 d-1 

Z E (dS)2k-1 t2k-1 
i=O xp<ds-ip<yp i=O xp<t-ip<yp 

dit 

d-1 

_E E (t-i)2 (mod p). 
i=O xp<t-ip<yp 

dit 

Since (p, d) = 1, every s in xp < s < yp is uniquely expressible in the form t - ip 
with dIt and 0 < i < d. Hence, the right side is ExYS<< p 2k-1 = S(x, y). 

We will refer to an application of Proposition 1 as "splitting the interval (x, y) 
into d parts." 

PROPOSITION 2. If x < y, then S(x, y) -S(1 -y, - x) (mod p). 

Proof. Change variables and use (p - S)2k1 S2k1 (mod p). 
The derivation of (7) from (5) is just an application of the two propositions, with 

d = 2: 

( 6 5 ) 
S 

3 5 ) S( 6 5 2)( 6 5 ) ( 3 10 ) 

-(I + 2 )S iS)-2 S 
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In the proof of Theorem 3 we will use other simple properties of S(x, y), such as 
this one, which we used already in the proof of Theorem 2: If x < y < z and yp is 
not an integer, then S(x, z) = S(x, y) + S(y, z). 

THEOREM 3. If p is a prime > 10 and p - 1 does not divide 2k, then 

c(2,9,l0) B2k (1 + 22k-1 + 32k-1 + 42k-1)S 1 

? 
(1 + 22k-1 + 32k -1 + 42k -1 + 120' 9 4k 10 ~~~~120k)( 3 1 

3 2k-1s( 2 7U (2 2k-1 + 6 2k1)s(5 18 
-_3 

S(9 ' 30 18 ' 6047 
2 2k 

17 3 ) (22k-1 + 42k-1 + 12 2k-)S 18 120) 

- (22k1 + 42k1)S( 42' (mod p) 

The total number of terms on the right side is about p718. 

Proof. All congruences in this proof have modulus p. Theorem 2 with b = 9 gives 

C (2 9, 10) 4~k - 5( 
I I 

+ St 

I 2 
+ 1 S 3) 

I 
5 9 
2 

) 
Split the third interval (3/10, 1/3) into three parts: 

S(3 1 1 1=31 + 32k (13 4 + 32k i- 7 

By Proposition 2, S(23/30, 7/9) - S(2/9, 7/30). Note that the intervals (13/30, 
4/9) and (2/5, 4/9) overlap. When we combine the three congruences just stated, 
we find 

C(2, 9 
B 

10)k (I + 32k-l)S( 
1 

+ S( 
2 32k-S12 7 

+S(2 
2 ) ?+(1 + 32k-1)s 13 4) 

Now we split the intervals (2/5, 13/30) and (13/30, 4/9) into two parts and apply 
Proposition 2 to the second parts: 

2(530) 23 - S( 
1 13) + 22k- 1S 7 43) 

5 ' 30 5 60) (S60 60) 2- 113 ,+ 2k-1S( 17 

(30 9) S( 60 9 43 13 

2k-~S 13 2) 22k1S( 
5 1)7 2 

(i 60 9 
2 

18 60) 
Since S(1/5, 2/9) = S(1/5, 13/60) + S(13/60, 2/9), we have 

C(2, 9, 10) 4k (? 1 \ + 22kl)S( 
1 130 

4k 
32k 1)S 

0 
?(l9 + S60] 

+ (I + (1 + 32k- 1)22k-1)S 13 ) 32k-1S(2 7) 

- (1 + 32k -1)22k - IS( R ) - 2 I 
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Finally, we split the intervals (1/5, 13/60) and (13/60, 2/9) into two parts and 
apply Proposition 2 to the second parts: 

(5 k 60 ) (10' 120 ) 12' 120 

-2k-s13 13 2kS1SI 47 

-10 20, 9 ) 18 120 ) 

When these expressions are substituted into the previous congruence and the overlap 
of the interval (1/10, 1/9) with (1/10 13/120) and (13/120, 1/9) is noted, the 
formula in the statement of the theorem is obtained. 

Using the same techniques and starting from (7), we can prove a congruence for 
B2k modulo p with about p719.2 terms in the sums. First split the interval (3/10, 
1/3) into four parts. Then split the interval (13/40, 1/3) into four parts. With even 
more tedious arithmetic, we are able to prove a similar congruence for B2k modulo p 
with fewer than about p/22 terms in the sums, but it is too complicated to describe 
here. We do not know whether there are other congruences of this type having < Ep 

terms for arbitrarily small e > 0, allowing sufficiently complicated coefficients, the 
way lacunary recurrence formulas for the Bernoulli numbers canl be derived [3] 
having arbitrarily large gaps, allowing sufficiently complicated coefficients. 

3. The Search for Irregular Primes. We used Theorem 3 (and, on the rare 

pairs ( p, 2k) with 125000 < p < 150000. The following table lists the primes with 
index of irregularity greater than 3, that is, the primes for which there are more than 
3 irregular pairs. 

p The 2k for which p divides B2k 

125927 86088 92020 96554 105006 
127247 26164 113554 123032 124714 
135613 7274 94796 100336 121574 
149287 27394 50226 137698 146452 

Using the same methods that Wagstaff [6] used to prove FLT up to 125000, we 
proved FLT for all exponents in the interval 125000 < p < 150000. No problems or 
unusual cases arose. Of the 2114 primes in this range, 1270 are regular and 844 are 
irregular. There ae e656 primes which divide only one Bernoulli number, 145 which 
divide exactly two, 39 which divide exactly three and 4 (see the table) which divide 
four Bernoulli numbers. There are no primes in this range with index of irregularity 
> 4. 

Our CYBER 205 program was written in ratfor and translated into FORTRAN 
on a VAX. The appropriate su's were stored in one vector and their squares in 
another vector. The program repeatedly multiplied the first vector componentwise 
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by the second vector modulo p. During this operation, the dot product of the two 
vectors was also computed. The vector instructions of the CYBER 205 provide an 
extraordinarily efficient way of coding these operations. The CYBER 205 program 
ran nearly 100 times faster than one [6] for the IBM 360/75, although the ratio of 
execution times for most programs on these two machines is much less than 100. The 
main reason for this superb performance is that vector multiplication is done in a 
pipeline on the CYBER 205, and is as fast as vector addition. See Section 2.3 of [1] 
for a description of the CYBER 205. 

On page 575 of [5], Vandiver reports a device suggested by M. M. Abernathy to 
speed the computation of the right side of (7) when p 1 (mod 4). For such primes, 
(p - 1)/2 is even. Separate the terms on the right side into two sums, TQR over 
quadratic residues s (mod p) and TQNR over quadratic nonresidues s (mod p). Then 
the right side is just TQR + TQNR. Also, the right side for the exponent 2k - 1 + 
(p - 1)/2 is TQR - TQNR by Euler's criterion. (We have ignored here the possible 
change in the coefficients, which is easy to handle.) Therefore, the right sides for 
exponents 2k - 1 and 2k - 1 + (p - 1)/2 may be evaluated together. The sums 
TQR and TQNR need be computed only for exponents 2k - 1 < p/2. This trick 
nearly halves the effort required for a prime. It works for any congruence derived 
from Theorem 1. We used it in our program for the congruence of Theorem 3 
whenever p 1 (mod 4). 

Occasionally, the coefficients C(a, b, a + b - 1) in (2)-(5) and the congruence of 
Theorem 3 all vanish modulo p. (For example, suppose p 1 (mod 4), 2k= 
(p - 1)/2 and a2k 1 (modp) for a = 2,3, and 5. Then aP2k a (modp) 
for a 2, 3, 4, 5, 6, 8, 9, and 10. For another example, suppose p 3 (mod 4), 2k = 

(p + 1)/2 and aP-2k= 1 (modp) for a = 2,3, and 5. Then aP-2k = 1 (modp) 
for a = 2, 3,4, 5,6, 8,9, and 10.) In such a case, one may try E. Lehmer's con- 
gruence, 

(8) (22k-1 + 32k-1 + 6 2k-1 - 4) 4k =(P - 6s 1 (mod p2). 4k 
O<s<p/6 

In about half of these cases, the coefficient on the left side of (8) does not vanish 
modulo p, so that one may decide whether p divides B2k by summing about p76 
terms modulo p. The sum must be computed modulo p2 in the other cases. When p 
can fit in a computer word, but p2 cannot, the latter calculation requires expensive 
double-precision integer arithmetic. We completely avoided the problems of (8) by 
using Theorem 2: When Theorem 3 and (2) could not decide whether p divided B2k, 

the program determined the least odd b > 2 for which C(2, b, b + 1) was not 0 
modulo p. Then it determined whether ( p, 2k) was regular by computing the right 
side of the congruence in Theorem 2, which entailed summing fewer than about p78 
terms modulo p. In each of the 439 instances of this case with 125000 < p < 150000, 
some prime between 6 and 30 proved to be a suitable choice for b. 

4. A Lower Bound on the Number of Terms in Certain Congruences. We now 
prove the result to which we adverted in Section 2, namely, that the right side of 
{ a } + { b } - { a + b - 1) }always has at least about p/12 terms. We will only 
sketch the proof because it is tedious and because the result is not needed elsewhere 
in this paper. 
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Throughout this section we assume that p is an odd prime, k > 1, p - 1 does not 
divide 2k and 2 < a, b, a + b - 1 < p. We may assume with no loss of generality 
that a < b. The proof of Theorem 4 requires two lemmas. 

LEMMA1. The right side of (a) + {b} - (a + b -1) can be written Yi2niS(xi, yi), 
where ni = 2 or -2 and the intervals (xi, yi) are pairwise disjoint. 

Proof. Let 0 < s < p72. If (j - 1)p/a < s < jp/a for some 1 < j < [a/2], then 
S2k-1 appears on the right side of (a) with coefficient a + 1 - 2j. But j- 1 = 
[as/p], so the coefficient is a - 1 - 2[as/p]. Using this and analogous results for 
{b} and (a + b - 1), we see that the coefficient of S2k-I in (a) + {b} - (a + b 
- 1) is 

2([(a + b - 1)s/p] -[as/p] -[bs/p]). 

It follows easily from the inequality [x] + [y] < [x + y] < [x] + [y] + 1 that -1 < 
[(a + b - 1)s/p] - [as/p] - [bs/p] < 1. Therefore, the coefficient of S2k-1 in (a) 
+ { b }- (a + b -1 ) is -2, 0 or + 2. This concludes the proof. 

The coefficient - 2 occurs commonly, as in 

C(3 , 7) 2k 2St , - + 2St 71 - - 2S( 5 (- (mod p ) 

Suppose we make the obvious cancellation of like terms in the right side of 
{ a ) + { b) - { a + b - 1), but do not transform the sum using Propositions 1 and 
2. Then the form Ei n iS(xi, yi), with n1 = 2 or - 2, is unique and we make these two 
definitions: Let L(a, b) = Yi(yi - xi) and H(a, b) = Yi2ni(yi - xi). (Theorem 2 
asserts that L(2, b) = (b - 1)/8b when b is odd and (b + 2)/8(b + 1) when b is 
even. Moreover, H(2, b) = 2L(2, b) for all b because all ni = + 2 when a = 2.) We 
want to prove that L(a, b) > 1/12 for all a and b. We have introduced H(a, b) 
because it is related to L(a, b) and is easier to compute. 

The next lemma is the analogue of Theorem 2 with a = 2 changed to a = 3. 

LEMMA 2. Assume b > 3, p is prime, p > b + 2, k > 1, and p - 1 does not divide 
2k. Then 

C(3, b, b + 2)B2k/4k 

[(b - 1)731 s[+2b) s b +2)3 
I) 

M= ( b + 2 ' b ) ( b + 2 '3) m=l 

[b/2] Stm m + I 

m =[(b +2)/31 b/ 

Also, 

L(3, b) = I + [(b + 1)/2] [(b + 2)/2] - 2[(2b + 3)/3] [(b + 2)/3] 
3 b(b + 2) 

In other words, 

L(3, b) - (b - 1)(b + 3) 2[(b + 3)7612 
-I2b L b + 2) bLb + 2) 
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when b is odd and 

L(3,b) = + 2[b/6]([b/6]+ 1) 12 + b(b +2) 

when b is even. Finally, limb L(3, b) = 5/36. 

Proof. Let I = LCM(3, b, b + 2). All congruences are modulo p. As in the proof 
of Theorem 2, we find 

C(3, b, b + 2) 2k 

,21(Ll/(b22)] [l//b ])s~i 1 i) -2S( [1/2]) 

Now [(i - 1)/(1/(b + 2))] - [(i - 1)7(1/b)] is 1 if ml/(b + 2) < i < mi/b for some 
I < m < [b/2] or if ([b/2] + 1)1/(b + 2) < i < [1/2], and it is 0 for all other i in 
1 < i < [1/2]. Therefore, 

'B2k [-/ In m !!~+s[b/2 + 1 [1/2] (1 [1/2]' 
C(3, b, b + 2) 4k = E S b + 9 S( S [/])-S(3 1]) 

c(3,b~b+24k M= b +2'bJ b+ 2 ' 1 ) 3' l 

The term - S(1/3, [1/2]/l) cancels the preceding term and the terms of the sum 
having m > b/3, but introduces new terms which are sums over the complementary 
intervals (m/b, (m + 1)/(b + 2)). The term S([(b + 2)/3]/(b + 2), 1/3) in the 
statement of the lemma handles the transition at b/3. The formulas for L(3, b) are 
obtained by adding the lengths of the intervals and considering the possible values 
of b modulo 6 as separate cases. The limit is a simple consequence of these formulas. 

THEOREM 4. Assume 2 < a < b and a + b - 1 < p. Then there are always at least 
about p/12 terms s2k-1 on the right side of the congruence {a} + { b -{a + b - 1). 
That is, L(a, b) > 1/12 for all such a and b. Moreover, L(2, 3) = L(3, 4) = 1/12, 
and L(a, b) = 1/12 only in these two cases. 

Proof. Let c = a + b - 1. Note that 
[a/2 1[ b/2 1 [c/21 1 

H(a,b)= (a+1-2j)-+ L (b+1-2j) L - (c+1-2j)-. 
j=1 j=1 J=1 

Now YJ"'7(a + 1 - 2j)/a = [a/2][(a + 1)/2]/a, which is a/4 when a is even 
and (a2 - 1)/4a when a is odd. Thus, H(a, b) is given by this table: 

Case a b c H(a, b) 

1 even even odd 4(a + b-i) 

b-i 
2 even odd even 4b 

a-i 
3 odd even even 4a 

4 odd odd odd (a + b)(a - 1)(b - 1) 
4ab(a + b - 1) 
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By Lemma 1, the ni in the definition of H(a, b) are 2 or - 2, SO L(a, b) > 

H(a, b)/2. Consider the four cases in turn. 
In Case 1, L(a, b) > (a + b)/8(a + b-1) > 1/8 > 1/12. 
In Case 2, L(a, b) > (b - 1)/8b, which is 1/12 when b = 3 and > 1/10 > 1/12 

when b > 5. Note that a = 2 when b = 3 in this case. 
In Case 3, L(a, b) > (a - 1)/8a, which is > 1/10 > 1/12 when a > 5. If a = 3 

and b is even, then L(a, b) = 1/12 + 2[b/6]([b/6] + 1)/b(b + 2) by Lemma 2. 
We have L(3, 4) = 1/12 and L(3, b) > 1/12 when b > 6. 

In Case 4, L(a, b) > (a + b)(a - 1)(b - 1)/8ab(a + b - 1). This lower bound 
increases monotonically with b when a is fixed. If a > 5, then b > 5, so L(a, b) > 

4/45 > 1/12. Finally, if a = 3 and b is odd, then 

L (a, b) = - 1)(b + 3) + 2[(b + 3)/612 
12b(b + 2) b(b + 2) 

by Lemma 2. We have L(3,3) = 1/5 > 1/12. Now [(b + 3)/6] >(b - 1)/6 be- 
cause b is odd. Hence, L(3, b) > (b - 1)(5b + 7)/36b(b + 2), which is > 32/315 
> 1/12 when b > 5. This completes the proof. 

A computer search found that L(2, 5) = L(4, 5) = L(5, 6) = 1/10 and suggests 
that L(a, b) < 3/28 only in these three cases and the two mentioned in Theorem 4. 
To show this, one would have to prove analogues of Lemma 2 for L(5, b) and 
L(7, b). 

School of Medicine 
University of Pennsylvania 
Philadelphia, Pennsylvania 19104 

Department of Computer Sciences 
Purdue University 
West Lafayette, Indiana 47907 

1. R. W. HOCKNEY & C. R. JESSHOPE, Parallel Computers: Architecture, Programming and Algorithms, 
Adam Hilger, Bristol, 1981. 

2. WELLS JOHNSON, "p-adic proofs of congruences for the Bernoulli numbers," J. Number Theory, v. 7, 
1975, pp. 251-265. 

3. D. H. LEHMER, "Lacunary recurrence formulas for the numbers of Bernoulli and Euler," Ann. of 
Math., v. 36, 1935, pp. 637-649. 

4. JONATHAN W. TANNER, Proving Fermat's Last Theorem for Many Exponents by Computer, B. A. 
Thesis, Harvard University, 1985. 

5. H. S. VANDIVER, "On Bernoulli's numbers and Fermat's last theorem," Duke Math. J., v. 3, 1937, 

pp.569-584. 
6. SAMUEL S. WAGSTAFF, JR., "The irregular primes to 125000," Math. Comp., v. 32, 1978, pp. 583-591. 


	Cit r425_c434: 


